40 Bond New York, NY

Technical Report 2

Samantha D'Agostino Structural Option Consultant - Dr. Thomas Boothby October 24, 2008

Table of Contents

Executive Summary	3
Introduction	4
Architectural Design Concepts	4
Structural System	5
Foundation	5
Superstructure	6
Lateral System	8
Loads	9
Gravity Loads	9
Floor Systems	10
Two-Way Reinforced Flat Plate	10
Non-composite Steel Frame	12
Hollow Core Precast on Steel	14
Two-Way Post Tensioned	16
System Comparison	18
Conclusion	19
Appendices	20
Appendix A – Two-Way Flat Plate	20
Appendix B – Non-Composite Steel Frame	29
Appendix C – Hollow Core Precast on Steel	33
Appendix D – Two-Way Post Tensioned	36
References	49

Executive Summary

The pro-con structural study of alternate floor systems discusses the existing structural floor framing of 40 Bond and three alternate framing systems. Each option is examined using typical bay analysis of a 25'x20' bay. The existing structure is a 9" thick two-way flat plate slab with #4@12 top and bottom and additional reinforcement at the supports due to increased moments at these locations. Using ACI 318-08, the minimum slab thickness was determined and is less than the designed thickness of 9". The Direct Design Method was then used to design the reinforcement in the column strips and middle strips in each direction. Both methods of shear, wide beam action and punching shear, were checked and satisfied, as was the deflection.

The three alternate systems that were analyzed included:

- Non-composite steel framing
- Hollow core precast concrete on steel beams
- Two-way post-tensioned slabs

The non-composite steel framing was designed using the AISC *Steel Construction Manual* and *Vulcraft Steel Roof and Floor Deck Guide*. The preliminary design was composed of 2C20 metal deck with 4.5" slab, W12x19 beams and W18x35 girders. The 4'-0"x6" hollow core precast panels with 2" topping were selected from the PCI *Design Handbook* and the supporting girders were determined to be W18x35 when optimized. The two-way post-tensioned slab was designed to be 8" thick with 12 tendons distributed uniformly over the long span direction and 12 tendons banded at the columns along the short span. Due to the small amount of tendons over 25' and 20' spans it does suggest that the thickness of 8" is conservative and with further analysis may be determined to work at a thinner dimension with an increased number of tendons. A minimum amount of mild steel was designed as well for this slab.

The advantages and disadvantages were discussed for each framing system, and it was determined that the steel framing in both the non-composite and hollow core systems were not feasible. They increased the floor depth to 22.2" and 27.5" which did not even compare to the 9" two-way flat plate and the 8" two-way post-tensioned slab. Overall, the post-tensioned slab was the best choice for further investigation as a possible framing system for 40 Bond. Not only is the slab depth minimal, allowing for greater floor-to-ceiling heights, but the post-tensioning allows for longer spans, can carry a greater load, reduces vibration, limits deflection and requires no additional fireproofing. There are concerns in regards to the construction of the system, however, because it does require trained contractors and special safety procedures to ensure it is done correctly. With this is mind, the two-way post-tensioned slab seems like a feasible option for the structural proposal required by Senior Thesis.

Introduction

The pro-con structural study of alternate floor systems examines the existing floor framing of 40 Bond that was designed by DeSimone Consulting Engineers (DCE) and analyzes three other possible systems. The existing design is a two-way flat plate slab and the alternates that were studied include non-composite steel framing, hollow core precast concrete panels on steel beams, and a two-way post-tensioned slab. Gravity loads determined in Technical Report 1 were used in the design to help determine slab thicknesses, member sizes and necessary reinforcement. Aside from the actual composition of each system, the report aims to compare and contrast the advantages and disadvantages related to constructability, system weight, system depth, fire protection and various other criteria to determine which systems may be possible topics for the structural proposal required by Senior Thesis.

Some information pertinent to understand 40 Bond is that the building is located on a 13,600 ft² parcel of land located on Bond Street between Lafayette and Bowery Street in New York City. The footprint of the building is 64'-8" by 134'-4" and the building has an overall building height of 152'-0" from cellar to the top of the penthouse structure. There is a 20'-0" setback at the seventh floor with a roof terrace that occupies this space. Typical spans range from 19'-6" x 25'-0" to 23'-2 ¹/₂" x 25'-0" and floor-to-ceiling heights range from 11'-10" to 14'-0". A total of 23 condominium units and 5 townhouses are contained within this building and the plans vary as the type and number of units change throughout. In addition to the building there is also a 140'-0" long, 22'-0" high cast aluminum gate located along Bond Street that was designed to withstand the lateral forces that are present at this site.

Architectural Design Concepts

40 Bond Street was designed by the Swiss firm Herzog & de Meuron with New York based Handel Architects. The idea behind this luxury residential building was to reinvent the cast iron building typology that is prevalent in this lower Manhattan neighborhood. The building consists of one cellar that houses a fitness center, storage space and equipment rooms. The first and second floors are devoted to five through-building, 2-level townhouses. The layout then changes to accommodate four condominium units on each level from the third to the sixth floor. Once again, at the seventh floor the plans change incorporating a 20'-0" setback and reduced number of condominium units including only two per floor from levels 7 to 9. The tenth floor is a full plan condominium with a penthouse structure that rises 20'-0" above the main roof. It is in the penthouse that a direct relation can be made between architectural concepts and structure. A 44'-0" clear span is achieved with two hidden columns and the core shear wall as supports leaving nearly three completely glass walls.

The south face also enforced some strict tolerances in regard to structure. Operable floor-to-ceiling windows are held in place with green glass mullions (Figure 1). This entirely glass façade limits the variation in columns to less than $\frac{1}{2}$ ". The north façade contains the same windows but the glass mullions are exchanged with pre-patina copper. These mullions then serve as a grid for the perimeter columns along the north and south faces. Small 10"x10" concrete columns are located behind these mullions and space at 6'-3" on center between the second and tenth floors. The variation in layout, fluctuating column dimensions, and necessary setbacks resulted in different transfer locations that required beams to redirect the loads.

Figure 1 – South Facade

With many buildings located in cities such as New York, there is always an awareness of retail value. The more space there is to offer the more expensive the unit may be. The flat plate concrete system allows for tall floor-to-ceiling heights that remain unobstructed because of the limited number of beams and girders dropping into the space. In order to preserve the architectural design, maximize area and create appealing spaces, the concrete structure deviates from what is typical in the design and construction of a residential building to create an aesthetically pleasing and interesting structure. As a result of such specialization, however, this 90,000 sf building had a very high cost in comparison to its size which is attributed to such things as formwork required for transfer beams and many slender columns.

Structural System

Foundation

The geotechnical engineering study was performed by Langan Engineering & Environmental Services on September 10, 2004. In this study it was found that the water level was approximately 42.8' below the existing ground surface. The cellar extends 12'-8" below grade and therefore there was not a concern in regard to increased uplift pressures at this level. Langan noted that the bearing materials were suitable for a shallow foundation and that the recommended allowable bearing pressure would be 5 kips/ft². As a result, a 30" reinforced concrete mat foundation was designed with bearing walls and buttresses supported by a strip footing.

The 30" slab is 5 ksi normal weight concrete (NWC) and increases to a thickness of 48" and 84" within the core shear walls where the elevator pit is located. Reinforcement varies throughout this mat slab. Buttresses ranging in size from 14"x29 ½" to 18"x79" are located around the perimeter. Interior columns ranging in size from 12"x22" to 28"x28" have an increased strength

of 8 ksi. Located at columns 3B, 3C and 3F (Figure 2), there are also foundation mat shearheads to resist punching shear due to high loads that continue from the roof down to the foundation.

Figure 2 - Foundation Plan with Typical Column Grid and Shearhead Locations Noted

Superstructure

The ground floor is a 9" two-way flat plate slab (NWC) with a compressive strength (f'_c) of 5.95 ksi and typical reinforcement of #4@12 top and bottom with various sizes and spacing of bars at column locations. Located at the south face is a slab step that transitions to a 12" slab for the townhouse entrances. Typical to the floors above, there are also 3" slab depressions at the fireplaces and toilet areas and 14" slabs within the core. Perimeter columns ranging in size from 10"x24" to 16"x58" are located on the north, south and east walls while a 12" thick shear wall runs along the west face. The interior columns dimensions are then 12"x22", 22"x22" and 28"x28". All of the columns from the foundation to those supporting the fourth floor have a concrete strength of 8 ksi. There are beams located around the stair openings in the townhouses and collector beams that tie together the core shear walls which are typical on all floors.

The second and third floors have the same twoway flat plate slab as noted above minus the slab step. Particular to the second floor is the introduction of the 10"x10" concrete columns spaced at 6'-3" on center along the north wall that extend up the remaining height of the building. Because these closely spaced columns need to transition to fewer columns below, 14"x40" transfer beams (f'_c = 10 ksi, typical to all transfer beams) run the full length of this wall. The beams around the townhouse stair openings are also present on the second

Figure 3 – Typical Perimeter Column Detail

floor. The third floor then has the introduction of the $10^{\circ}x10^{\circ}$ columns spaced at 6'-3" on center along the south face. The transfer beams at this level are $60^{\circ}x16^{\circ}$ and extend the full length of this wall. These columns continue to the seventh floor where they step back 20'-0" due the setback at that level. This thin, wide transfer was implemented to limit the intrusion into the space below. Also, all the $10^{\circ}x10^{\circ}$ columns only have a 7" slab encroachment that has a 1" slab depression around each column (Figure 3).

All floors between level 4 to the penthouse level use a 9" two-way flat plate slab with #4@12 top and bottom plus various reinforcement at columns and a reduced compressive strength of $f_c = 5$ ksi. Similar slab depressions and increased slab thickness at the core are present. The columns supporting the fifth floor and above also have a reduced compressive strength of $f_c = 5$ ksi. The columns along the north and south façade remain 10"x10" while those located on the east and west walls and within the interior vary between 12"x22" to 28"x28". There is also the introduction of 22" diameter (Ø) circular columns that are used on some floors dependent on the tenant's request in their condominium. In addition to the beams within the shear wall core, there are also spandrel beams along the east and west faces.

At the fourth floor a transfer beam is present along the east wall (Figure 4). This 12"x50" transfer was designed after construction began due to the presence of an adjacent chimney encroachment on site. Then at the seventh floor the setback takes place. It is here that loads increase due to the roof terrace provided by this setback. A 20"x24" transfer beam along line 2 is needed due to the introduction of the 10"x10"

Figure 5 – Transfer Beam at Seventh Floor

columns along this line (Figure 5).

The penthouse level and its roof are a great example of what can be achieved when using concrete. The dimensions of the penthouse are 23'-4" x 44'-6" and it has a thickened 19" slab with #4@12 top bar reinforcement and #5@8 bottom bar reinforcement. A 44'-0" clear span is achieved with the support of the concrete shear walls to the east and two 28"x16" columns to the west. The loads from the two columns need to be transferred and a 32"x24" beam is used to direct these loads to nearby columns, one of which is only 10"x14". The roof above this long span

Figure 6 –Penthouse Roof Structure

structure is a combination of upturned beams, inclined piers, and two separate 8" slabs with #5@12 top and bottom spanning between its two supports (Figure 6). Located on the other side of the core is an enclosed elevated mechanical room. Additional loads due to the equipment and its surrounding 8" CMU walls will be applied at this level.

Lateral System

The lateral system is a combination of 12" ordinary reinforced concrete shear walls (Figure 7). Within the core shear walls there are the stair, elevator and mechanical shafts. The typical horizontal reinforcement in these walls is #4@12 while the vertical reinforcement ranges from #4@12 to #8@6 depending on the level they are located on and which portion of the shear wall

Figure 7 - Typical Plan with Lateral System Highlighted

is being examined. The west shear wall is reinforced with #4@12 as the horizontal reinforcement and a range of vertical reinforcement from #4@12 to #7@12. All shear walls supporting the ground floor to those supporting the fourth floor have concrete with $f'_c = 8$ ksi while those supporting the rest of the building have an $f'_c = 5$ ksi.

The presence of the west shear wall allows for the center of rigidity to move closer towards the middle of the plan. Because the core shear walls are not centralized within the building they draw the rigidity to the east. When the center of rigidity is not in line with the resultant lateral force there is eccentricity and moments due to torsion become a factor. These wind and seismic loads travel through the rigid diaphragm (flat plate slab) to the shear walls and then down into the foundation. This load path is governed by the concept of relative stiffness.

<u>Loads</u>

Gravity Loads

The determination of gravity loads by DCE was done using the New York City Building Code (NYCBC 2003), while American Society of Civil Engineers (ASCE) 7-05 was the main reference for this report. A different standard was used to comply with the requirements of AE Senior Thesis; ASCE 7-05 was the logical reference. Another note is that DCE chooses not to use live load reductions in their design. In order to keep the loading consistent, the reductions will be not be factored into the live loads determined by code. The loads that were determined from each reference as well as the design loads are noted in Table 1.

	Table 1 - Gravi	ty Loads		
Description	NYCBC (2003)	ASCE 7-05	DCE Value	Design Value
DEAD (DL)				
Concrete	150 pcf	150 pcf	150 pcf	150 pcf
LIVE (LL)				
Condominiums & Townhouses	40 psf	40 psf	40 psf	40 psf
Corridor (first floor, main lobby)	100 psf	100 psf	100 psf	100 psf
Corridor (serving independent units)	40 psf	40 psf	40 psf	40 psf
*Exterior Balconies	60 psf	100 psf	60 psf	100 psf
SUPERIMPOSED (SDL)				
Finishes, MEP, Partitions	20-25 psf	20-25 psf	20 psf	25 psf
**Concrete Pavers	40 psf	40 psf	40 psf	40 psf
SNOW (S)				
***Snow	30 psf	21 psf	30 psf	30 psf

* In NYCBC, exterior balcony LL is 150% of adjacent areas. Therefore (40psf)x(1.5)=60psf.

** Superimposed load on 7th Floor and Penthouse terraces will be replaced as 40 psf over area.

*** Snow load calculations are located in appendix. Due to greater live load required on roof terraces, the roof live load on these areas will be 100 psf.

Floor Systems

Two-Way Reinforced Flat Plate - Existing

Material Properties

Loading:

Concrete:	9" slab (NWC)	Dead (self weight):	112.5 psf
	22"x22" columns	Live:	40 psf
	$f_c = 5000 \text{ psi}$	Superimposed:	25 psf
Reinforcement:	$f_v = 60,000 \text{ psi}$		

Description

This two-way reinforced flat plate system designed by DCE includes a 9" NWC slab that contains #4@12 top and bottom. Additional reinforcement is placed at supports, to resist increased moments at these locations and range from #4 to #6 bars at varying spacing, depending on the magnitude of the moments.

A typical interior bay analysis, done at the 6th floor, was completed using the Direct Design Method reviewed in *Design of Concrete Structures* by Nilson, Darwin, and Dolan with the loads determined by ASCE 7-05. The bay was split into two frames, Frame A and Frame B noted in Figure 8, which were checked for minimum slab thickness and reinforcement design. The slab thickness of 9" exceeded the minimum of 8.42" and the reinforcement was found to be the same as that designed by DCE, or resulted in a fewer number of bars, due to the absence of lateral loads in this analysis. The typical bay was taken as 25'x20' to simplify calculations rather than looking at the 25'x20' bay, 25'x19.5' bay and 25'x23.25' bay separately. There are calculations reviewing the wide beam action (one-way) and punching shear (two-way) within the slab which did not prove to be an issue and did not require any additional shear reinforcement. Deflections were also computed and found to be within the limits of l/480 for long-term deflection. All supporting calculations for this analysis can be found in Appendix A.

Advantages

This particular floor system was a likely choice for 40 Bond. In New York City, midrise residential buildings are most often concrete structures and the use of a flat plate system is both economical and advantageous. The smooth slab makes it possible to have an exposed ceiling because there are a limited number of beams penetrating into the area. The smooth slab also allows for larger floor-to-ceiling heights than those that would be provided by a steel frame. Large spans could not be done with this system, but 40 Bond has moderate spans reaching a maximum of 25', which is within the limits of flat plate design. There is also no additional fireproofing needed.

Disadvantages

As with all flat plate systems, shear is often a concern. There is a transfer of moments from the slab to the columns, which increases shear stresses at these connections. 40 Bond, however, does not have any shear related issues in the elevated slabs due to the 9" slab thickness required for the 25' spans. The only locations within the building that were designed with additional shear reinforcement were at columns B3, C3 and F3 at the basement level. Another issue that was unable to be resolved due to the use of the two-way flat plate slab was the presence of transfer beams. These beams are needed at building setbacks, transitions from many slender columns to fewer, larger columns, and at the penthouse structure to allow for the long clear span. Other systems may help to eliminate the large transfer beams which will not only be aesthetically pleasing as fewer beams drop into the space, but will also reduce the labor and cost associated with preparing the formwork.

Non-Composite Steel – Option #1

Material Properties

Concrete:	4.5" slab (2.5" topping)
	$f'_{c} = 3,000 \text{ psi}$
Steel:	$f_y = 50,000 \text{ psi}$
Reinforcement:	$f_y = 60,000 \text{ psi}$
Metal Deck:	2C20 - 3 span

Loading	
Dead (self weight):	45 psf
Live:	40 psf
Superimposed:	25 psf

Description

This non-composite steel system was designed using a typical bay of 25'x20' with intermediate beams spaced equally at 8'-4". The Vulcraft 2C20 non-composite deck is able to span 10'-7" unshored given a 3-span condition, which is greater than the 8'-4" spacing proposed for this layout. The 2C20 system is accompanied with a total slab depth of 4.5" satisfying the load and deflection limits of this system.

Calculations were completed using the AISC *Steel Construction Manual* to size the beams and girders at this interior bay. Controlled by deflection, the sizes determined can be seen in Figure 9. At this stage of preliminary

Figure 9 - Non-Composite Steel Layout

consideration, columns have not yet been designed. Supporting calculations for the slab and framing can be found in Appendix B.

Advantages

This system has several advantages including the speed in erection and lower cost due to the absence of shear studs. It is a fairly lightweight system in comparison to concrete within the same bay as well. There is no need for formwork which reduces labor cost related to preparing the forms and because the decking is able to span 10'-7" during unshored construction there is also no need for shoring. Additionally, there is flexibility in laying out other building systems due to the service plenum that will be produced by the drop ceiling.

Disadvantages

In New York City it is most common to construct midrise residential buildings with concrete. A reason for not using steel is the deeper floor system that results from its implementation. In addition to the 4.5" slab depth, the W18x35 girders add another 17.7", bringing the total system depth to 22.2", which is much greater than that achieved using concrete flat plate slabs. This reduces the floor-to-ceiling height and in some instances where building height limits are enforced, could lead to fewer floors in the building. In the case of 40 Bond, reducing the floor-to-ceiling height would negatively impact the architectural concept as well.

Other disadvantages to this system include possible floor vibrations and the need for additional fire protection to obtain a 2 hour fire rating. Lead time is another issue because fabrication, detail and transport are all required for the steel. Lastly, there is the issue with the existing lateral force system of ordinary reinforced concrete shear walls. If these shear walls are to remain, special connections need to be considered as the two materials frame together. Unions in New York City also require that no trade is above the steel erectors, so to use this system with the existing shear walls, a plan must be formulated to organize how the concrete and steel will be constructed. Otherwise, a steel lateral system may have to be designed.

Feasibility

In regards to 40 Bond, the disadvantages outweigh the advantages when looking into noncomposite steel floor framing. After this comparison, it is suggested that no further investigation be done on this system.

Hollow Core Precast Panels on Steel – Option #2

Material Properties

Concrete:	4'-0''x6''	with 2" topping
	f' _c =	5,000 psi
	f' _{ci} =	3.500 psi
Tendons:	96-S	
	$f_{pu} \; = \;$	270,000 psi

Loading	
Dead (self weight):	74 psf
Live:	40 psf
Superimposed:	25 psf

Description

Particular to the hollow core precast concrete plank system is the slight adjustment to all bays within the building. Because these precast panels come in 4'-0" increments it seems most logical to have the bays as 25'x20' and 25'x24' rather than the actual 25'x20', 25'x19'-6" and 25'x23'-2 $\frac{1}{2}$ " bays. In regards to this analysis, an interior 25'x20' bay was used and is shown in Figure 10. At this point, column design has not been completed.

A 6" thick plank with 2" topping was selected using the *PCI Design Handbook*. The span of

Figure 10 –Hollow Core Precast Planks on Steel Layout

25'-0" was achieved using 96-S strands within the hollow core panel. This designation relates to the number of strands (9), the diameter of strands in 16ths (6) and that the strands are to be straight (S). This assembly is capable of holding a service load of 87 psf which exceeds the value of 80 psf calculated using the live load, superimposed load and an additional 15 psf for the 2" concrete topping.

The beams that the precast will frame into were determined with the AISC *Steel Construction Manual* and are sized as W18x35. Supporting calculations may be found in Appendix C.

Advantages

The hollow core precast system has numerous benefits. The construction can be completed quickly which allows for earlier occupancy in the building and the possibility to fast-track the project. This product is durable, low maintenance and it is easy to construct year-round because no curing time is needed. It also attenuates noise and is recognized as a LEED rated system.

Disadvantages

There are also many disadvantages associated with the use of this system. The bay sizes would have to be adjusted to accommodate the width of the precast panels and in turn result in an increase in building size that may or may not be acceptable. At this time, the vibration associated with this system is unknown.

As with all steel systems, there is also a deeper floor system, 25.7" in this study that reduces the floor-to-ceiling height within the space. This can become an issue in instances were building height limits are present and within 40 Bond it would sacrifice open space provided by the high ceilings. Although the lead time is relatively short for the panels, it is longer for the steel to account for fabrication, detailing and transportation. The steel also requires spray fireproofing to obtain the appropriate fire rating. There is a concern with the connections required at the concrete shear walls and its impact on design and cost. In addition, effort must be put forth to determine the scheduling that would be required for the interaction of trades in New York City.

Feasibility

This system does not seem like a likely candidate for further investigation. Its benefits are outweighed by the many disadvantages of its use within 40 Bond.

Two-Way Post-Tensioned– Option #3

Material Proper	ties
Concrete:	8" slab (NWC)
	$f_{c} = 5,000 \text{ psi}$
	$f'_{ci} = 3,000 \text{ psi}$
Tendons:	Unbonded Tendons
	1/2" diameter - 7 wire strand
	$A_{pt} = 0.153 \text{ in}^2$
	$f_{pu} = 270,000 \text{ psi}$
Reinforcement:	$f_y = 60,000 \text{ psi}$

Description

. . . .

A two-way post-tensioned slab was designed for a typical 25'x20' bay shown in Figure 11. Conservatively, the span/depth ratio was taken to be 40 which resulted in a preliminary slab thickness of 8". After following an example provided by the Portland Cement Association, it was determined that 12 tendons, providing 26.6k resistance/tendon, were needed in both the long and short directions. The number of tendons implies that the slab depth may successfully work at a thinner dimension if further study is done and as a result a larger number of tendons would be required.

Loading	
Dead (self weight):	100 psf
Live:	40 psf
Superimposed:	25 psf

Figure 11 – Two-Way Post-Tensioned Layout

These tendons are banded in the short span direction and uniformly distributed in the long span direction. This is a typical layout for this type of construction and works particularly well in regards to placement of tendons at openings. The only large opening is the core located within two shear walls and its long dimension is perpendicular to the uniformly distributed tendons. Dead end anchors may then be placed on either side of the opening. In addition to the tendons required, there is also a limited amount of mild reinforcing that is needed. Additionally, at this point in design, column sizes were taken to be the same as those used in the existing flat plate system. Calculations supporting the design can be found in Appendix D.

Advantages

This system appears to be the most advantageous of the three proposed systems reviewed in this report. Post-tensioned slabs allow for a thin floor which immediately challenges any system

containing steel framing. The 8" slab thickness determined in this analysis is actually thinner than the 9" two-way flat plate slab used in 40 Bond and it has potential to be even thinner. Similar to the existing design, there would be a clean concrete surface at the ceiling as well. The rigidity and denseness of post-tensioning limit the effect of vibrations and the balanced load provided by the tendons also reduces deflection. This system could be used in 40 Bond without adjusting the layout and would actually increase the floor-to-ceiling height.

40 Bond employs the use of several transfer beams throughout the building. The implementation of post-tensioning may alleviate the need for or at least reduce the size of the current beams, which would save both time and money associated with construction. These slabs have the ability to carry large live loads and can permit larger spans as well. This function may reduce the number of columns due to larger bay sizes. Finally, a short lead time is associated with this construction.

Disadvantages

Although there are many benefits of using this system, there are also some disadvantages and concerns related to it. Most of these negative aspects are related to construction. This system is very labor intensive and has the potential to be dangerous. There are extra safety procedures required and experienced contractors are needed to successfully construct this system. In New York City, there are very few people experienced with post-tensioning so that is definitely a concern for suggesting its use in 40 Bond.

General construction issues also include the need for formwork and shoring. It is also very difficult to cut openings after the concrete is poured in fear of cutting the stressed tendons located throughout the slab. These concerns should be understood and analyzed if this system is to be considered.

Feasibility

The advantages of implementing a two-way post-tensioned slab are very promising when considering an alternate framing system for 40 Bond. The concern is present in regards to construction and whether at this time post-tensioning a building in Manhattan is reasonable. Two other post-tensioned buildings, The Opal in Queens and 140 West 42nd Street in Manhattan, have been designed, which suggests that it is possible to use this system and therefore can be a consideration for further investigation. The ability to reduce the number of transfer beams and columns will be very beneficial when considering redesign. The formwork and installation of formwork required for those members is definitely costly so limiting the need will save a reasonable amount of money.

System Comparison

	Existing	Option #1	Option #2	Option #3
Comparison Criteria	Two-Way Reinforced Flat Plate	Non-Composite Steel Frame	Hollow Core Precast Panel on Steel	Two-Way Post- Tensioned Flat Plate
Slab Self Weight	112.5 psf	45 psf	74 psf	100 psf
Slab Depth	9"	4.5"	8"	8"
System Depth	9"	22.2"	25.7"	8"
Deflection	0.307" < 0.625"	1.19" < 1.25"	0.846" < 1.0"	Further study needed
Vibration Control	Great	Poor	Further study needed	Great
Fire Rating	2 hour	1.5-2 hour	1.5-2 hour	2 hour
Fire Protection	None	Spray	Spray	None
Architectural Impact	Existing	Negative - Reduces floor-to- ceiling height	Negative - Reduces floor-to-ceiling height	Benefit - Increases floor-to-ceiling height
Constructability	Medium	Easy	Easy	Hard
Formwork	Yes	No	No	Yes
Lead Time	Short	Long	Long	Short
System Cost*	\$19.96/SF	\$24.85/SF	\$32.50/SF	\$20.36/SF
Feasibility	Yes	No	No	Yes (Investigate)

* The system cost is a rough estimate using *RS Means Assemblies Cost Data* and *RS Means Facilities Construction Cost Data*.

Conclusion

After reviewing the comparison between each of the four systems is seems that the two-way post-tensioned system is the most feasible alternate floor framing system and is comparable to the existing two-way flat plate slab that was designed by DCE. There is concern in regards to the post-tensioned construction because of the intensity of the labor practices and the risks associated with them. Experienced contractors are needed to be able to successfully construct a post-tensioned project because the method and understanding of how it works is crucial for the project to be safe as well.

The benefits that would be gained from this particular system are the ability to increase the floorto-ceiling height with a slab thinner than the existing 9" two-way flat plate and the opportunity to employ longer spans. The tendons within the slab help to carry additional live load, reduce vibrations and limit deflection because of the balanced load that is produced by these stressed members. There is no additional fireproofing required and the layout of the building does not need to change. A post-tensioned slab also has the possibility to eliminate or significantly reduce the transfer system of 40 Bond. In doing this there would be less beam intrusion into spaces and a reduced cost due to fewer forms needed.

The other two systems, non-composite steel framing and precast hollow core concrete planks on steel, had benefits to their implementation, but these advantages were outweighed by the disadvantages in both cases. The most severe factor in both was the deep system depth. It would reduce the floor-to-ceiling heights and require drop ceilings to enclose the structure. There were also issues with the interaction of the steel systems with the existing concrete shear wall lateral system. Finally, in common practice, concrete construction is the typical means for midrise residential buildings in Manhattan so it is logical that a concrete system would seem more applicable and feasible in comparison.

At the completion of this technical assignment, it has been decided that due to the information discovered through this set of analyses that the two-way post-tensioned slab system deserves further investigation as a possible proposal topic for AE Senior Thesis.

Samantha D'Agostino

40 Bond Street

New York, NY

<u>Appendix A</u>

Two-Way Flat Plate – Existing

(This page left blank intentionally)

Technical Report 2

24 2	40 BOND	ORIGINAL SYSTEM - 2 WAY TELST PLOTE	1/8
	To Block AD down his		
	That have As designed to	wy Dce	
	• # + @ 12 " 400 +	bottom will additional ante d	
\bigcirc	· Two-way Stato	na int. beam	
	· DL = 112 5 PSF ;	W- 4000 , SPL 2000	
		Front	
(4)			
		DIRECT DESIGN METHOD (t	DM)
AL	19	ACI 318-08 01.13	
× 3			
5		* Assuming 25'-20' bay	
Č		to simplify auculation.	
2		Prome A	
	-	MB- Middle Strip	
~		UB = Lowin Brip	
U		tratever loads	
	25' 25'	(12)(137.5) + (10)(40)	
		= 0.229 KSF	
	A B C		
		* All references mode to AC	1318-0
\bigcirc		unices atherwise noted	
\bigcirc			
	PLNEL A		
	22" × 22" ond 22" (0 a	alumns (B2 a C2)	
	\$ 13.2.1 · CS is aw	idition on each side of a column	
	anterline = 6 250		
	(225)(20) - 51	or 0.250 undiad 15 1055	
	(0:20)(0)		
	Mo= to wle ln 2= to	(20) (25-22/12) (0.229) = 3071K	
	at = 0 since In =	O for no locans	
			-
	Min Unickness of sid	ab wo beens [table 9.5c]	
	Int ponel who drop	pords - J. (25.22/12)(12") - 8.42	4
		153 33	
		desan 9	OKAY
		y	
	Transe At Mt	MER OUS M - 100 M	
	17 M	Mtan 28 4 2 101 GIK	
		01 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
\bigcirc	42/p + 20/25 = 0.8	$\alpha e_{z p, \pm 0}$	
\bigcirc	\$ 13.6.4.1 .10	0.5 0.8 1.0	
	2 P. 10 - 1	0 75 75 75	
No.			
	the second se		and an and a second second
	5		

	40 BOND	ORI	DINAL BUSTE	M. 2WAY FLO PLATE	28
	75% of M ⁻ 25% of M	16 C3 = 149. 16 M3 = 49.	7 ^{11/4} 91/4		
	8 13. 4.4.4				
	Iz lei	0,5	0.8 1.0	0 60% of Mt to 5	+ (14 SIK
	x 22 /2,=0	පට	60 60	0 40% of Mt 40 T	15= 431K
B		M-	- Mr	M ⁻	
PA	Total Moment	-199.0	107.5	- 199.6	
Cam	MB	- 49.7	43	-49.9	
	Ponel A. Tota	$\omega = 20'$			
		CS= 10' = 121	2'		
		MS= Blone	thereide :	10 = 120"	
	- Design of SI	ab Reinf.			
	- NACH -		18		
	- Min Ba	el = Tamo el	aninkane	Paint	
			- 0. mien	+ for f. = (00 +=)	
		no min		- Jui 74 00 451	
\bigcirc					
) (* 3/4" clear cover	
			4 48	9"	
	He -			# 4 dg=9-914	12 (0.5)= 0
	+10.2 +608	# 608 (cs)		d, = 8-0	10=7.5
		havet		V D - 06 2 7 9 4	21
	mid Left				4
	mid 109+ +4012 (MS	igne .		$\pm (a \rightarrow A_{2} = 7)$	8.8 ⁰
	mid 10ft #4@ 12 (MS))		$+ 6 \rightarrow ds = 7.$	38" 13"
	mid 1997 *4@12 (MS)		$\# (o \rightarrow d_{S} = 7)$ $d_{L} = 7$	58" 13"
	mid left #4@12 (MS	bing in cs		$\# (a \rightarrow d_{S} = 7, d_{L} = 7, d_$	88 ⁰ 13"
	- Design Black r Hem	being in cs	legt	+ 6 → ds = 7. dl = 7. Interior Spon Mid Right	88 ⁰ 13"
	- besign Black R Hom	keinf in cs Description Mu (ik)	Vegt - 149.7	$# G \rightarrow d_{S} = 7,$ $d_{L} = 7;$ $d_{L} = 7;$ $Mid \qquad Right \\ G4, 5 \qquad -14;$	88 ⁰ 13" 9.7
	- Design Black R Hem	einf in CS Description Mu (IX) Cs with blue)	Lest - 149.7 120	$# 6 \rightarrow d_{S} = 7.$ $d_{L} = 7.$ $d_{L} = 7.$ $d_{L} = 7.$ $Mid \qquad Regest$ $64.5 \qquad -14$ $120 \qquad 1$	28" 13" 9.7 20
	- Design Black K Hem 2 3	Einf, in CS Description Mu Lik) C3 width blin) Effective deptind	Left - 149.7 120 7.82	$# 6 \rightarrow d_{S} = 7.$ $d_{L} = 7.$ $d_{L} = 7.$ $Mid \qquad Reget$ $64.5 \qquad -14$ $12a \qquad 1$ $7.6 \qquad -1$	88" 13" 9.7 20 7.13
	- Design 3600 1 +40 12 (M5 - Design 3600 1 Hem 1 2 3 4	Einf, n CS Description Mu (IK) Cs wielln blun) Effective deplin d Mh = Mu (0,9	Lest - 149.7 120 7.32 - 166.5	$# 6 \rightarrow d_{S} = 7, d_{L} = 7; d_{L} = 7;$	88" 13" 9.7 20 7.13 1.66
	- Design Blaub F +4@12 (MS - Design Blaub F Ham 1 2 3 4 * Oreck dimin	king in CS Description Mu (ix) Cs width blun) Effective deptin d Mh = Mu/0.9 = Mh (100	149.7 - 149.7 120 7.32 - 166.3	* $(a \rightarrow d_{S} = 7, a_{L} = 14, a_{L}$	88" 13" 9.7 20 7.13 166.3
	- Design Black F +4@12 (ME - Design Black F Ham 1 2 3 4 * Creck dmin	Einf in CS Description Mu (ix) Cs widen blun) Effective deplin d Mn = My / 0.9 = My / 0.9	1294 - 149.7 120 7.32 - 166.3 20(12") 0.59 54	$ \begin{array}{c} * & (a \rightarrow d_{S} = 7, \\ d_{L} = 7, \\ d$	88" 13" 9.7 20 7.13 1663 5 5
	- Design Slaub F Hom 1 2 3 4 * Creek dmin	keinf in CS Description Mu Lik) C3 widen blun) Effective depend Mn = My/0.9 = Min Lio	149.7 - 149.7 120 7.82 - 166.3 20(12") 0.69 54	$ \begin{array}{c} * & (a \rightarrow ds = 7, \\ dl = 7, \\ dl = 7, \\ dl = 7, \\ dl = 8, \\ dl = 1, \\$	8 8" 13" 20 7.13 166.3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	- Design Black F +4@12 (ME - Design Black F Hom 1 2 3 4 * Creek dmin	Event in CS Description Mu Cik C3 width blum Effective deptin d Mn = My/0.9 = Mn Cio p Sy b Cl = (60.3 Cl	120 - 149.7 120 7.82 - 166.3 00(12") 00,89 54	$ \begin{array}{c} * & 6 \rightarrow d_{S} = 7, \\ d_{L} = 7, \\ d_$	8 8" 13" 13" 20 7.13 1663 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	the Mid left #4@12(ME Design Blaub F Hem 1 2 3 4 * Creck dimin dimin	2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	149.7 - 149.7 - 120 7.32 - 166.5 00(12") -0.89.541	# 6 → $d_{S} = 7.$ $d_{L} = 7.$ $d_{L} = 7.$ $d_{L} = 7.$ $d_{L} = 7.$ Mid Regnt G4.55 - 14 120 - 1 7.6 - 14 7.6 - 14 120 - 1 7.6 - 14 120 - 14 120 - 14 7.6 - 14 120 - 14 7.6 - 14 120 - 14	8 8" 13" 20 7.13 166.3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	- Design Black r +4@12 (ME - Design Black r Hem 1 2 3 4 * Creck dimin dimin 5 R	2200 f. in CS Description Mu Cik) C3 width blun) Effective deptin d Mn = Mu (0.9 = Mn (100) (0.0243)(40) 2 = Mn (2000)/bd	149.7 - 149.7 120 7.82 - 166.5 00(12") -0.89.541 200(120)(1-0. 2 310	* $(a \rightarrow ds = 7, a_{1} = 7, a_{1}$	8 8" 13" 9.7 20 7.13 166.3 5 5 5 5 5 5 5 5 5 5 5 5 5
	tesign Stab F +4@12 (ME +4@12 (ME +tem 1 2 3 4 * Greek dimin dmin 5 F 6 9 1 2 3 4 * 4 * Creek dimin	Peinf in CS Description $M_U (IK)$ C3 with blun) Effective depend $M_h = M_V / 0.9$ = M_h (100 $M_h = M_H / 0.9$ =	Lest - 149.7 120 7.82 - 166.5 00(12") 0.59 541 00(120)(1-0.2 2 2 31 0.0	* $(a \rightarrow d_{S} = 7, a_{L} = 1, a_$	8 8" 13" 13" 20 7.13 166.3 5 5 5 5 5 5 5 5 5 5 5 5 5
	- Design Stab F +4@12 (ME - Design Stab F Hom 1 2 3 4 * Creck dimin 5 5 7 4 2 3 4 4 * Creck dimin	$\frac{1}{2} = \frac{1}{2} $	Lest - 149.7 120 7.32 - 166.5 00.(12") -0.59.0 541 00.(120)(1-0. 2 311 120 0.00 (120)(1-0. 100 100 100 100 100 100 100 1	$\begin{array}{c} * & (a \rightarrow d_{S} = 7, \\ a_{L} = 0, \\ a_{L} = 7, \\ a_{L} = 1, \\ a_$	8 8" 13" 9.7 20 7.13 166.3 5 5 5 5 5 5 5 5 5 5 5 5 5

Technical Report 2 Samantha D'Agostino

	40 000	10 O 81	CINAL SYSTEM	· 2WAYFLAT	TUDE 38
			M	M+	
	9	N=lorger of 748. Areq	15.03 +10]	9.9-101	10,8-2111
			A2=0131112	Amus = 0.20 1	2 An = 0.44in2
	10	Himm = width of 300 24	6.66+7	7	7
	Calask	oted		DOE	
-	int .	M-=16+5		Int: M	15+5
DM		Mm+ = 10=+4	-	Mt	= 10#4
CAMF		MR- = 11#(0		ME	2 15#6
5	The n	ant reunf for c3-1	k is less unon	Upat used	IN DOE A
	DOBDIN	de reason for you's	difference ma	y be what y	nes tontion
	04 4	the CS is alose up	the shear was	1 which is	etrawing
	more	moment. My calast	ation alves no	t include later	as loading
	at	this moment.			3
	The	reant at the left on	a midspen are	STLANDY 1000	r which
	may	be due to the increase	ed SDL of	25 as 13 B	ce is value
	072	2005			
0.1	Design	of Sab Rounf in 1	48		
	0	3		Int Spen	
	Hun	Description	M	N-	PM F
	1	MUCIE	- 4	9.9	43
	2	MS wight burn)	12	20	120
	3	Effective deptin (ur	2 -	1.0	75
	3	Effective deptor Cur Mn = Mu (0, 9) - 5	1.5 B.4	1/5
	3 4 * a	Effective deptin Gr Mn = Mulary eck dimin * 2.14 +7.	5' okay	7.4D 18.4	1/5 47.8
	3 4 * 0	Effective deptin (in Min = Mu/0.9 rock dimun * 2,14 * 7. Ru = Min(2000)/101 =	5 okor	7.4D ,0.4 98.D	7.5 47.8 85
	3 4 3 4 0 9	Effective deptin Gr Mn = Mu/o.g Tock dimun * 2.14 * 7. Ru = Min(2000)/bd 2 D from Table A.B.O.(1)) 5'0K04 -	2.5 5.4 98.5 00105	7,5 47.8 හිටි 0,00%
	3 4 3 4 7	Effective deptin Gr Mn = Mulo.9 Tock dimun * 2.14 * 7 Ru = Min(kease)/bd z Diftom Table A:50(1 As = Jobd	1) 5' okay 100) 0,	7.50 .0.4 98.5 00105	7,5 47.8 80 0,0046
	3 4 0 9 7 8	Effective deptin (in Mn = Mu/0.9 Took dimun * 2.14 * 7 Ru = Min(12000)/bd 2 Difform Table A 50 (1 Ag = Jobd Agrin = 0.00 (8) bt) 5' okoy 100) 0,	7.50 10.4 98.50 00165 49	1,31 1,31
	3 4 0 9 7 8 9	Effective deptin (in Mn = Mu/0.9 nock dimun * 2:14 * 7 Ru = Mickenso)/bd 2 Ofform Table A:50(1 A5=10bd Asmun= 0:00(8)ot N=largero F 748) 5' okoy 100) 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7.50 10.4 98.50 00105 49 94	1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3
	3 4 3 4 7 9	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 * 7 Ru = Mickesso)/bd 2 pofform Table A.30(1 A3=10bd A3=10bd A3=10bd A3=10bd A3=10bd 0.00(8)ot N=broger of 148 0.20	5' okoy 5' okoy 400) 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7.50 1.50 1.60 1.65 4.9 .94 .94	1,5 47.8 8 0,004 1,31 1,94 10
	3 4 9 7 8 9	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 - 7 Ru = Mickedo)/bd 2 Difform Table A.B.O.(1) AB = Jobd ABmun = 0.0018/05T N=lorgerof = 748 0.20 Nmin = width of TAS	2) - 5 5 okay 100) 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	7.50 98.50 00165 49 94 10	7.5 47.8 85 0:00:45 1.31 1.94 1.0
	3 4 7 9 10.	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A:50 (1 A5 = 10 bd A5 = 10 bd N= lorger of 120 N= lorger of 120 Nmin = width of tag 2 t	2) 5' okay 100) 0, 1. 1. 9,7 -1 2 (g.ce	2.5 0.4 98.5 00165 49 94 94	7.5 47.8 85 0.0045 1.31 1.94 1.04 7
	3 4 4 7 9 10.	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2:14 * 7 Ru = Min(2000)/bd = D from Table A:50(1 A3=10bd A3mun= 0.00(18)0t N=longerof 748 0.20 Nmin = wishin of 748 2t Hd - 10 = 4	2) 5' okey 100) 0, 100) 0, 100 100 100 100 100 100 100	7.50 1	7.5 47.8 85 0.0045 1.31 1.31 1.194 10]
	3 4 * 0 0 7 8 9 10.	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2:14 * 7 Ru = Min(2000)/bd = Difficient Table A:50 (1) Ag = jobd Agmin = 0:00 (8)0t N=larger of = 148 0:20 Nimin = width of that 2 t Hd - 10 # 4	2) - E 5' okay 10D) 0. 1. 9. 1. 9. 1. 1. 1. 1. 1. 1. 2. 2. 4.2. 2. 2. 4.2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	7.50 1.50	7.5 47.8 85 0.0045 1.31 1.94 1.04 7
	3 4 7 9 10. (Calculated My cal	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 * 7 Ru = Mickesso)/bd = Difficient Table A:50 (1) Ag = jobd Agmin = 0.00 (8)0t N=larger of 148 0.20 Nimin = width of the 2 t Hd - 10 # 4	2) - E 5' okay 10D) 0.1 9.7 - 2 4.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.5 3.6.4 98.5 00165 49 94 94 10 6-77 - 10#4 - 10#4	7.5 47.8 85 0.0045 1.31 1.94 1.04 7
	3 4 3 4 7 0 7 8 9 10. [Calculad My all MS -	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A:50 (1) A5=1060 A5=1060 N=1000018105 N=10000018105 N=10000018105 0.20 Nimin = width of that 25 Hd - 10# 4	2) 5' okay 100) 0,1 11 9,7 1 9,7 1 0,1 1 1 9,7 1 0,1 1 1 9,7 1 0,1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.00 1.00	7.5 47.8 85 0.0045 1.31 1.94 1.94 1.0 7
	3 4 3 4 7 0 7 8 9 10. [Calculad My all MS -	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A 30 (1) Ag = Jobd Agricult a 1000 (18) bt N=broger of 120 N=broger of 120 N= 0.20 N= 0.20	2) 5' okay 100) 0,1 11 9,7 1 9,7 1 0,1 1 1 9,7 1 0,1 1 1 9,7 1 0,1 1 1 9,7 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	7.5 8.4 98.5 00165 49 .94 .94 .94 .94 .94 .94 .94	7.5 47.8 85 0.0045 1.31 1.94 1.94 1.0 7
	3 4 7 9 10. [Calculad My cal MS -	Effective deptin (in Mn = Mu/0.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A 30 (1) Ag = Jobd Agricult a 300 (18) bt N=broger a fr 128 0.20 Nimin = width of that 2 t Hed - 10 = 4 Devoted Jallie mater A.	2) 5' okay 100) 0,1 1 9,7 - 2 2 4,7 - 2 2 4,7 - 2 2 4,7 - 2 2 4,2 2 4,2 4,4 2 2 4,4 4,4 4 4,4 4 4,4 4 4,4 4 4 4	7.00 1.00	7.5 47.8 85 0.0045 1.31 1.94 1.94 1.0 7
	3 4 7 9 10. [Calculed My cal MS -	Effective deptin (in Mn = Mu/o.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A 30 (1) Ag = jobd Agrin = 0.00 (8) bt N=broger of 128 0.20 Nimin = width of the 2 t Hed - 10 = 4 Devoted Jallie mater A.	2) 5' okay 100) 0,1 11 9,7 2 4,7 2 4,7 2 4,7 2 4,2 1 2 4,2 1 1 1 1 1 1 1 1 1 1 1 1 1	7.00 1.00	7.5 47.8 85 0.0045 1.31 1.94 1.94 1.0 7
	3 4 3 4 9 9 10. 10. 10.	Effective deptin (in Mn = Mu/o.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A 300 (1 A5-10-bd) A5-10-bd N=broger of 128 0.20 Nimin = width of TAS 2 t Hed - 10 = 4 Devoted value mater A.	2) 5' okay 100) 0,1 1 9,7 2 4,7 1 9 2 4,7 1 2 2 4,2 1 2 2 2 4,2 2 2 2 4,2 2 2 2 4,2 2 2 2 4,2 2 2 2	7.5 8.5 98.5 00165 49 94 94 94 96 97 98 98 98 98 98 98 98 98 98 98	7.5 47.8 85 0.0045 1.31 1.94 1.94 1.0 7
	3 4 3 4 7 9 10. 10. 10.	Effective deptin (in Mn = Mu/o.9 Pock dimin * 2.14 * 7 Ru = Min(2000)/bd = Difficient Table A 30 (1) Ag = Jobd Agricult a 1000 (B) bt N=lorger of 120 N=lorger of 120 N= 0.20 N= 0.20	2) 5' okay 100) 0,1 11 9,7 2 4,7 2 4,7 2 4,7 2 4,2 1 2 4,2 1 1 1 1 1 1 1 1 1 1 1 1 1	7.5 8.5 98.5 00165 49 	7.5 47.8 85 0.0045 1.31 1.94 1.94 1.0 7

Samantha D'Agostino

40 Bond Street

FCH 2	40 BOND	OPICINAL E	PABIEM -	2 with Fust Plate	48
	DUFLB				
	22 "× 22" 00 wm 5 ((53453)			
\frown	CS = 120" (\$ 1	3.2.1)			
	MS = 15 - 18	0"			
	Mo= to alpen= to	(25)(0.229)(20 - 22/12)	= 236.212	
	X=0 since Fro	O the beams			
	Min Underess of BI	ab who int b	eoms Eta	ole a.sc	
~	In 200-22	12)(2") = 6.0	u" cq"	OKAY!	
7Vc	30 8	3			
6Å					
5					
9	Frame B Mit	M = 0.65	5M0 = 183	-D'	
	m m	M+=0.1	55M0 : 82		
		~ ~	2/2,=0.	12/21= 20=1.25	
	8 12 (0.4.1				
	12/2	126	2.0		
	S 22/0 - D -	5 757			
	- per o	U 1 <u>13</u>	15		
	75% of M-40	CB = -115.11	×		
	25% of M- 40	MS: -38	1114		
\frown					
()	\$ 13.6.4.4				
0	J=1-e,	1.0 1.25	2.0	60.10 ot M+ 40 C8 -	49. Leik
	~ l2/e,=0	00 40	1 40	40% of H+ toms:	33.1K
		M-	M+		
	Total Moment -1	58.5	82.7		
	- 1	16.1	49.6		
	mis	38.4	33 .1		
	Hare Do Jojal Widy	1 - 20			
	NS = 151410	0"			
	#	2 Md (CS)		H = a") = 7 6 0	
	#1 @ 12 (MS)		# (0	+	
			- 4	as 100 1.00 - 110	
	Design of Stop pain	f in cs	10	vt.	
	Hem Description	,	Mine	MT	
	Mo(14)		-115.1	49,6	
	2 CB width blin		120	120	
\sim	3 Effective dept	d(in)	7.88"	7.5"	
()	4 Mn=1~10.9		-127.9	551	
\sim	* Check dmin = 374	, 47.88", -	5" OKO	4'	
	$\beta = R = Mn(12000)$	rd ²	-204	98	
		and the second se		the second se	
	6 DAOM TODE A	En (NOD)	0.0035	0,00165	

Samantha D'Agostino

Teat 2	10 POON	<u>> 0</u>	RICINOL SUSTEM. 2	-WAY FLOT PLOTE	58
	Heren	Demotro	NA-	M+	
	7	Astobal	1221		
	8	As min =0, min	- 10A	1.41	
	Q.	Al- lorance Dur B	194	1.14	
		0.44 or 0.20	7.8 <u>+(0)</u>	9.7 - 10)	
	10	Nmin=widthofe	S 6.00 → 7	7	
		25			
DVD	Calcolo	:d.	DEE		
6Å	int:	M= = 8 * 0	Int: M	= 12 # 6	
2		M+=10 # 4	T I	1 = 0 = 4	
	M= HS relativ lateral arc I	n componed 40 dese proximulty e stillness, drai loods are not coold expect m	TOLE. A reason of DOLE. A reason of the life greanwould be more load. W taken into a count y rount to be close	rs less for the for Uhis may be , which due to 14th Uhis, report , but one yray , out one yray	
	desig	ped by DCE.			
	M+ r	and is the same	as yrot designed b	y DCE	
()	- Design or	f slob eurif. in	MS	t.	
	Hem	nesenion	M+	M+	
	1	MOLIK	- 38.4	83.1	
	2	MS WORD blin	180	18.0	
	3	Effective d lin	1,5	90	
	4	Mn= Mulag	- 42.7	21.8	
	×	1mm= 1.88"147.5	" B" orey'	26.0	
	5	Q = M_(12000)	1 - 50. La	28	
	(6	a transtable A	Sa (NED) amog	00	
	-	has and	0.000	0.0000	
	9	ho pay		0.80	
	q	Asmur- Dice Tor	8 44 -		
		N- 14081 07 101		1151	
	10.	Nmin - width of 25	MS 10	10	
	Calculat	cel (b)	DOE		
	16	*4	15#4		
	My co	leuroted volue most	ches that determine	uned by DCE for M	6-B
\bigcirc					

Samantha D'Agostino

40 Bond Street

Page 27 of 49

Samantha D'Agostino

Samantha D'Agostino

Samantha D'Agostino

New York, NY

<u>Appendix B</u>

Non-Composite Steel Framing – Option #1

(This page was left blank intentionally)

2 C CONFORM

Interlocking side lap is not drawn to show actual detail.

MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)

Tota Slab		WEIGHT		NW CONCRETE N=9 145 PCF		WEIGHT		LW CONCRETE N=14 110 PCF	
Depth	DECK	PSF	1 SPAN	2 SPAN	3 SPAN	PSF	1 SPAN	2 SPAN	3 SPAN
	2C22	44	6-11	9-0	3 4	34	7-8	9 - 10	10-2
4.5	2C20	45	8-2	10-3	10-7	34	9-0	11-3	11-7
(t=2.50)	2C18	45	10-2	12-4	12= 4	35	11-2	13-1	13-1
	2C16	46	10-5	12-6	12-11	36	11-7	13-8	13-10

SLAB INFORMATION

Total Slab	Theo, Conc	rete Volume	Recommended
Depth, in.	Yd ³ / 100 ft ²	ft ³ / ft ²	Welded Wire Fabric
4	0.93	0.250	6x6-W1.4xW1.4
4 1/2	1.08	0.292	6x6 - W1.4xW1.4
5	1.23	0.333	6x6 - W1.4xW1.4
5 1/4	1.31	0.354	6x6-W1.4xW1.4
5 1/2	1,39	0.375	6x6 - W2, 1xW2, 1
6	1.54	0.417	6x6 - W2.1xW2.1
6 1/4	1.62	0.438	6x6 - W2, 1xW2, 1
6 1/2	1.70	0.458	6x6 - W2 1xW2 1

SECTION PROPERTIES

Deak	Design	Deck		Section F	Properties				
Dеск Туре	Thickness	Weight	I _p	I _n	Sp	Sn	Va	Fy	
	in.	psf	in ⁴ /ft	in ⁴ /ft	in ³ /ft	in ³ /ft	bs/ft	ksi	
2C22	0,0295	1.62	0.324	0.321	0,263	0,266	1832	50	_
2C20	0,0358	1.97	0.409	0.406	0.341	0,346	2698	50	

ALLOWABLE UNIFORM LOAD (PSF)

TYPE	NO. OF	DESIGN		CLEAR SPAN (ft-in)											
NO.	SPANS	CRITERIA	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10- 0	10-6	11- 0
		Fb = 30,000	210	174	146	124	107	93	82	73	65	58	52	48	43
	1	Defl. = I/240	170	128	98	77	62	50	42	35	29	25	21	18	16
		Defl. = I/180	227	170	131	103	83	67	55	46	39	33	28	25	21
		Fb = 30,000	200	167	141	121	105	92	81	72	64	58	52	47	43
2C22	2	Defl. = I/240	408	306	236	186	149	121	100	83	70	59	51	44	38
		Defl. = I/180	544	409	315	248	198	161	133	111	93	79	68	59	51
		Fb = 30,000	243	204	173	149	129	113	100	89	80	72	65	59	54
	3	Defl. = I/240	319	240	185	145	116	95	78	65	55	47	40	34	30
		Defl. = I/180	426	320	246	194	155	126	104	87	73	62	53	46	40
		Fb = 30,000	272	225	189	161	139	121	106	94	84	75	68	62	56
	1	Defl. = 1/240	215	161	124	98	78	64	52	44	37	31	27	23	20
		Defl. = I/180	286	215	166	130	104	85	70	58	49	42	36	31	27
		Fb = 30,000	263	219	185	159	137	120	106	94	84	75	68	62	56
2C20	2	Defl. = I/240	515	387	298	235	188	153	126	105	88	75	64	56	48
		Defl. = I/180	687	516	398	313	250	204	168	140	118	100	86	74	65
		Fb = 30,000	322	269	228	196	170	149	131	117	104	94	85	77	70
	3	Defl. = I/240	403	303	233	184	147	119	98	82	69	59	50	44	38
		Defl. = I/180	538	404	311	245	196	159	131	109	92	78	67	58	50

From Vulcraft Steel Roof and Floor Deck Guide

Tent2	40 BOND	OPTION #1 - NON COMPOSITE STEEL	1/2
			/
	NON COMPOSITE STEL		
	- USCOL TOTOLOGY OF		
	-10003 · UL= 40p	84	
	SDL = 15	Doof	
	DL- 45	bet	
	La dig	0 8 mb das + + + + + + + + + + + + + + + + + + +	
	NWC	3 500 = 10'-7", 145pcf	
		3000 pol	
D	Three	nf= 60,000psi	
AMPA	2020	Ditecic (20 conform)	
3	= bool lotot	40+28+48= 110psf	
	- 2020. 3000 8	1-6" apon	
	Th = 30,000	2094, 1000 = 117 per > 110 pag	OKOYI
	2/240 20GA	, 10+d = 82058 > 40 0=f	OKANI
	3/180, 20 GA	1 100 d= 109 psf > 45 psf	
	Compared	up load of ut concerete	
	the house		
	1000 = 12 (26+49)+16(40)=148 per =0148 var	
(The = 8'-4" - 8.3	33'	
\sim	us. = 8.33'(0.	18 KSA)= 1,23 KIF	F
	No = 1.23KIF (2)	2) = 12.3K	÷
	2		
	14 - 1, 2440		
	MU = LIZDEA	(20) = 61.0	
	0		
	* Acoune fully brog	ed	
	BOOM - TABLE 82	(AISC Steel Monual)	
	W12×14 0	8 Mn= 65.2 > 61.514 OKAY	
	Au= "1340=	(20) (212") = 0. (00)	
		360	
	5 5 5 MA	5 (4005) (8,33') (20') (172.8) = 1	0. 4.14
	Su Satel	384 (2000) (28 10) (1000)	
		0.407×0.007 0KBY	
	·P	P	
\bigcirc	Gizded V	+ p= 24.6 for interior girder	
U.	8,33 8.3	8' 9:33	
	I DEDAUK		
	NO 7 727.01	A() (9 373) - 100 VK	
	171mol = 191 01 = (2	- 0 100. 40 J 7 100	
1	The second se		

Samantha D'Agostino

New York, NY

<u>Appendix C</u>

Hollow Core Precast Panel on Steel – Option #2

(This page left blank intentionally)

Samantha D'Agostino

New York, NY

4HC6+2

2" Normal Weight Topping

Table of safe superimposed service load (psf) and cambers (in.)

Strand	Span, ft																				
Code	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30			X	
	305	258	220	188	162	139	119	97	78	62	47	35									
66-S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1									
	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.3	-0.5	-0.7	-0.9									
	358	304	260	224	194	168	146	122	101	82	66	52	39								
76-S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0								
	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.2	-0.3	-0.5	-0.7	-0.9								
		390	336	291	253	221	194	170	146	123	104	87	72	58	46	35					
96-S		0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.1	0.0					
ange - Charlestern		0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	-0.1	-0.3	-0.5	-0.7	-1.0	-1.4					
			398	346	302	265	234	206	182	158	136	117	100	85	71	59	47				
87-5			0.6	0.6	0.7	0.7	0.7	0.7	8.0	0.8	0.7	0.7	0.7	0.6	0.5	0.4	0.3				
			0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.4	0.2	0.1	-0.1	-0.3	-0.5	-0.8	-1.2	1			
07.0				382	335	294	260	231	205	181	157	137	119	102	88	75	63				
31-5				0.7	0.8	0.8	0.9	0.9	0.9	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7				
ania.				0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.2	0.0	-0.2	-0.5	-0.8				

warrigh based on strain compatibility; bottom tension limited to $6\sqrt{f_c}$; see pages 2-2-2-6 for explanation.

From PCI Design Handbook

Technical Report 2

$\frac{1}{2} \frac{1}{2} \frac{1}$	h
Loop. U*40005 SDU* 25 ps; DL* 10 ps; (from PCI Hardbook for Upped numbers) 11 15pst + 23ps; t.40ps; 30 ps; super imposed ser fc: 3800 ps; Bon* 28:-0" 4'.0" x 6" NUNC w/ 2" NUN Top 13 	t i
$SOU2 25 past DL2 18 past (from PCI merdiocol for Unpoed members) 14 15 past + 25 past + 40 past = 30 past super imported serv file = 8000 past 3pri = 25'-0" 4'-0" × (a" NUMC w/ 2" num topping in g 6 - Sconying 87 past - 0.4" contar & erection g erends @ ellie" & -Braight Seuf ut = 74 past (appees - Lood = 1.2 (20-14) + 1.0 (40) = 183.past Mu = (183 past)(25)(20)2 = 229"C 6 Mu = \sqrt{(3ub = 0.0007 + 5(40 past)(25)(20)^{+}(1728))}Bu = \sqrt{(3ub = 0.0007 + 5(40 past)(25)(20)^{+}(1728))}Ext = 18(am = 4 + 310 me) OKAY! Other beens + in dired wood 4^{1}\cdot0" \times (a" + NUMC w/ 2" Topping 4^{1}\cdot0" \times (a' + NUMC w/ 2" Topping 4^{1}\cdot0" \times (a' + NUMC w/ 2" Topping 4^{1}\cdot0" \times (a' + NUMC w/ 2"$	
$ \begin{array}{c} DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped number for loped numbers) \\ \hline DL^{2} & D past (from PCI Hardbook for loped number for lop$	_
$\frac{11}{100} \frac{1000}{1000} \frac{11}{100} \frac{1000}{1000} \frac{11}{100} \frac{1000}{1000} \frac{1000}{1$	
$\frac{112}{12pEt} + 2^{2}pest t 40pest = 30 pest super imposed series = 3c * 5000 pest = 300 pest = 9 = 7 - 0 * 100 pest = 9 = 7 - 0 * 100 pest = 9 = 7 - 0 * 100 pest = 9 = 7 - 0 * 100 pest = 0 * 0 * 0 * 100 pest = 12(20+74) t 1.00 (40) * 188 pest = 12(20+74) t 1.00 (20) * 229 * (1728) = 229 * (1728) = 0.846* * 100 (1000) * 1000 * $	
$\frac{1}{2} \left[\frac{1}{2} \frac$	nce
$\int c^{-1} S(200) psill for 270, 000, psill for = 2800, psill for = 2800, psill for = 281-01' \int d^{-1} s(b^{-1}) x(b^{-1}) x(b^{-1}) $	-
$f(t) = 220 \text{ prod} $ $\frac{4^{1} \cdot 0^{11} \times (0^{11} \text{ NUC} (0) = 2^{11} \text{ NU} \text{ Topping} \\ \cdot 9 (0^{12} \text{ Sconverg} - 2^{12} \text{ for order } \text{Convert (long period)} \\ 9 (0^{12} \text{ Sconverg} - 2^{12} \text{ for order (long period)} \\ 9 (0^{12} \text{ Stronds} (0^{12} \text{ (III)} + 1, (0^{12} \text{ (III)} + 1$	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
$\frac{4^{1} \cdot 0^{11} \times 6^{11} \times 1002 \times 1012}{9} = \frac{9}{100} \times 5^{11} \times 5^{11}$	
$\frac{1}{2} = \frac{1}{2} \left[\frac{2}{2} \right] \right] \right] \right] \right] \right] - \frac{1}{2} \left[\frac{2}{2} \right] \right] \right] \right] \right] \right] \right] \right] \right] }{2} \right] $	
$ \frac{1}{2} = \frac{1}{2} \frac$	-
9 9 stronds: @ $6166'' \phi$ - Straight Self wt = 74 psj- Guerces: Load = 1.2 (28+74) + 1.00 (40) = 188 psf Mu = (183 psf)(25)(20)2 = 229'''(Mu = (183 psf)(25)(20)2 = 229'''(Mu = (183 psf)(25)(20)2 = 229''(Au = 12(260 = 0.0007) = 5(40 psf)(25)(20)4 (1728) 384 (29000)(1000) = x Tx = 1860 m 4 < 300 m4 OKA4! Other beams = no direct 1000 4'0" x(6" NWC w 2" Topeng 4HC6+2, 90-3 on W 18x85 x w1/2x19 praillel 40 precest porets. No ocrus 40 resist 1000, 4rtic 40 odd Stop1/14 Art = 3 (40+22+74)(25)(20)4 (1728) = 0.846" 4 \$ [2407].	
Set f wit = 74 ps; Guocess: Lood = 1.2 (28+14) + 1.6 (40) = 188ps; Mu = (183ps;)(25)(20)2 = 229"C Mu = (183ps;)(25)(20)2 = 229"C $GM_{H} = VI 18 \times 55 = 249!C > 229"C GM_{H} = VI 18 \times 55 = 249!C > 229"CGM_{H} = VI 18 \times 55 = 249!C > 229"C GM_{H} = VI 18 \times 55 = 249!C > 229"CGM_{H} = VI 18 \times 55 = 249!C > 229"C GM_{H} = VI 18 \times 55 = 249!C > 229"CGM_{H} = VI 18 \times 55 = 249!C > 229"C GM_{H} = VI 18 \times 55 = 249!C > 229"CGM_{H} = VI 18 \times 55 = 249!C > 229"C GM_{H} = VI 18 \times 55 = 249!C > 229"CGM_{H} = VI 18 \times 55 = 249!C > 229"C GM_{H} = VI 18 \times 55 = 249!C > 21000 \times 10000 \pm xT_{X} = 1800 m^{4} < 510 m^{4} OKeV!GM_{H} = VI 18 \times 55 = 1000M_{H} = S(40 \pm 25 \pm 1000), (1009)(500) = 0.846" < \frac{1}{2} / 240 = 1.$	
Set f wt = 74 ps; Gibbers: Lood == 1.2 (20+74) + 1.4 (40) = 18 3 ps; Mu = (18 3 ps; (25)(20)) = 229"C Mu = (18 3 ps; (25)(20)) = 229"C Mu = (18 3 ps; (25)(20)) = 229"C $Mu = (18 3 ps; (25)(20)) = 229"CMu = (18 3 ps; (25)(20)) = (1728)384 (29000) (1000) = xTx = 18(6 m + 2 510 m^{4} 0 c 49"C 4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6" \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0" \times 6 \text{ Nusc } 0 = 2" \text{ Topping}4^{1} - 0 = 2(20 - 1)(20)^{1} (1728) = 0.846" < 2" / 200^{2} [120]$	
Girberts. Lood == 1.2 (20+14) + 1.40 (40) = 18 Spst MU = (18 3 pst)(25)(20)2 = 229"4 MU = (18 3 pst)(25)(20)2 = (1728) 384 (29000)(1000) = x $Tx = 1860 m^{4} + 510 m^{4} OKAY!$ Other beens one direct lood 4^{10} " x 6" NUSC w/ 2" Tapping 4^{10} (18 + 2, 90-3 on W 18 + 35) $X W 12^{10}$ parallel 40 proset ponets. No coma 40 resist 1000, 4 tex 40 add Stopulity $Art = 3(40+25-74)(25)(20)^{1}(1728) = 0.846$ " $4^{10}/240^{2}$ [.	
Groces: Lood = 1.2 (25+14) + 1.0 (40) = 188,psf Mu = (183,psf)(25)(20)2 = 229112 Mu = (183,psf)(25)(20)2 = 229112 $GM_{H} = W18X35 + 249112 × 229112 orbit(1728) Su = U(2ub = 0.0007 + 5(40,psf)(25)(20)) + (1728)384 (29000)(1000) \pm x\pm x = 186011 + 2 510 n4 Orbit(1 Other beems ord direct 100d 4^{10}" x(6" NWC w] 2" Topping4HC6+2, 80-3 on W18x35x W12+19$ parallel 40 precest ponels. No onna 40 resist 100d, 4rtic 40 ord Stapility $Arr + 3(40+20+14)(25)(20)^{1}(1728) = 0.8460" + \frac{9}{240^{2}} [x + 32+14)(25)(20)^{1}(1728) = 0.8460" + \frac{9}{240^{2}} [x + 32+14)(25)(20)^{1}(1009)(510)$	1
$ \begin{aligned} \begin{aligned} & Lood = 1.2(20+14) + 1.6(40) = 188psf \\ & Mu = (183psf)(25)(20)^2 = 229^{11}C \\ & Mu = (183psf)(25)(20)^2 = 229^{11}C \\ & Mn = 188x35 = 249^{11}C > 229^{11}C = 0.604^{11} \\ & Du = 12(2000 = 0.607) = 5(40 psf)(25)(20)^{4}(1728) \\ & 384(29000)(1000) = x \\ & Tx = 1860^{11} + 2 = 510^{11} + 000^{11} \\ & Tx = 1860^{11} + 2 = 510^{11} + 000^{11} \\ & Tx = 1860^{11} + 2 = 510^{11} + 000^{11} \\ & A'-0'' \times (6'' NWC w) = 2'' Topping \\ & 4+C6+2 = 96^{-3} = 00^{11} + 18\times85 \\ & x \times 12^{2}19 = parallel & yo proast ponets \\ & No como & to resist 1000 + 000^{11} \\ & An = 5(40+20+14)(25)(20)^{4}(1728) = 0.846'' + \frac{9}{240^{2}} 200^{2} (1009)(510) \end{aligned} $	
$Mu = (183pst)(20(20))^{2} = 229^{11}C$ $Mu = (183pst)(20(20))^{2} = 229^{11}C$ $Mu = 18x35 + 249^{11}C > 229^{11}C = 0.600^{11}$ $Su = 1(300 = 0.6007 + 5(40 pst)(23)(20)) + (1728)$ $384 (29000)(1000) = x$ $Tx = 18(9 \text{ in } 4 + 510 \text{ in } 0CeV!$ $Mu = 16x35$ $M = 16x37 + 16(23) + 16x37 + 16x35$ $M = 16x37 + 16x37 $	
$\int \Delta u = \frac{1}{2} \left[2 \cos 2 = 0 \cdot \cos 7 = \frac{5}{2} (40 \text{ psf}) (25') (20')^{+} (1728) \right]$ $= \frac{1}{2} \left[2 \cos 2 = 0 \cdot \cos 7 = \frac{5}{2} (40 \text{ psf}) (25') (20')^{+} (1728) \right]$ $= \frac{1}{2} \left[2 \cos 2 - \frac{1}{2} \left[2 \cos 2 - \frac{1}{2} \cos 2 - \frac{1}$	
$\Delta u = \frac{1}{(240)} = 0.0007 = 5(40 port)(23)(20) + (1728)}{384 (29000)(1000) \pm x}$ $\exists x = 18(0 m^{4} + 510 m^{4} 0 kay!!$ Other beems one direct lood $4' \cdot 0" \times 6" NWC \ w = 2" \ Topping \\4HC(0 + 2, 96 \cdot 5 \ on \ W \ 18 \times 55]$ $x \ W = 12 \times 19 \ parallel \ 40 \ precest ponets.$ No come to resist lood, there to add stability $\Delta r_{1} = 3(40 + 20 + 74)(25)(20)^{4}(1728) = 0.846'' < \frac{9}{240^{2}} [240^{2}].$	
$384 (29000)(1000) \pm x$ $\pm x = 1860 \text{ in } 4 \pm 510 \text{ in } 0000) \pm x$ $4' \cdot 0'' \times 6'' \text{NWC} \text{w} 2'' \text{ topping}$ $4 + C6 + 2 96 \cdot 3 \text{on } \text{w} 18 \times 55$ $\times \text{w} 12 \times 19 \text{parallel up parced} \text{parels}.$ $\text{No come up resist 1000, unce up od stability}$ $\Delta n = 3 (40 + 25 + 74)(25)(20)^{4} (1728) = 0.8460'' \le \frac{3}{240^{2}} \text{ [}.$	
$T_{x} = 186 \text{ m}^{4} 4 \text{ 510 m}^{4} \text{ Okey!}$ Wher beens one direct lood $4' \cdot 0'' \times 6'' \text{NWC w} 2'' \text{ Topping}$ $4 \text{HC6+2, 90 \cdot 5} \text{on W} 18 \times 55$ $\times \text{W12 \times 19} \text{porallel 40, precest ponets.}$ No octing 40 resist 100d, 4reve 40 add Stability $A_{12} = 3 (40 + 25 + 714) (25') (20')^{4} (1728) = 0.846'' < \frac{9}{240^{2}} [240^{2}]$	
$T_{x} = 186 \text{ in } 4 \text{ 510 in } 000000000000000000000000000000000$	
Other beems . no direct lood (4'-0" x(6" NWC w/ 2" Topping 4+C6+2, 96-5 on W 18*35 * W12+19 parallel 40 precest ponets. No oching 40 resist 1000, 4reve 40 add Stability Are = 3 (40+23+714)(25')(20') * (1728) = 0.846" < 2 / 240" [.	_
Other beems • no direct lood A'-0" × 6" NWC w/ 2" Topping 4+1C6+2, 96-3 on W 18×35 × W12×19 parallel 40, precost ponets, No ochnog 40 resist 1000, 4reve 40 add stability Arc = 3 (40+23+74)(25')(20') * (1728) = 0.846" 4 \$ [240= [. 304 (29000) (1009)(510)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
4+106+2, 96-3 on W 18+35 * W12+19 parallel 40 precest ponets. No oching 40 resist 1000, 4rcic 40 add Stability Are = 3 (40+25+74)(25')(20') * (1728) = 0.846" < 2 / 240= 1. 364 (29000) (1009)(510)	-
× W12+19 parallel 40 precest ponets. No octing 40 resist 1000, treie 40 add Stability Are = 3 (40+25+714)(25) (20) * (1728) = 0.846" 2 \$ /240= (. 384 (29000) (1009)(510)	
* W12+19 parallel 40 precast ponets. No adming 40 resist 1000, 4rece 40 add stability Are = 3 (40+25+74)(25')(20') * (1728) = 0.846" 4 \$ /240= 1. 384 (29000) (1000)(510)	-
× W12+19 parallel 40 precest ponets. No octing 40 resist 1000, 4reie 40 add Stability Atr = 5 (40+25+714)(25)(20) * (1728) = 0.846" 4 \$ /240= 1. 384 (29000) (1000)(510)	
No acting 40 resist 1000, 4rcic 40 add stability $\Delta n = \frac{3(40 + 25 + 74)(25)(20)^{4}(1728)}{364(2900)(1009)(510)} = 0.8460'' < \frac{3}{240^{2}} _{240^{2}} _{1000}$	
$\Delta T = \frac{3(40 + 25) + 74(25)(20)^{4}(1728)}{364(2900)(1009)(510)} = 0.846'' < \frac{3}{240^{2}} _{240^{2}} _{100^{2}}$	
$\Delta T = \frac{3}{240 + 23 + 14} (25, 120) (1000) (510) = 0.846 2 / 240 = 1.$	
284 (29000) (1000) (510)	o
	-
	+
	-

New York, NY

<u>Appendix D</u>

Two-Way Post-Tensioned – Option #3

(This page left blank intentionally)

Samantha D'Agostino

TECH 2 40 BOND OPTION # 3 - POST-TENSIONEL 2/12 At time of Jacking (ACI 18.4.1) $f'_{ci} = 3000 p_{ci}^{-1}$ $f'_{ci} = 0.60 f'_{ci} = 0.6 (3000) = 1,800 p_{ci}^{-1}$ $T_{ension} \cdot 3\sqrt{f_{ci}} = 3\sqrt{3000} = 164 p_{ci}^{-1}$ At service loads (ACI 18.4.2 + 18.3.3) $f'_{c} = 5000 \text{psi}$ $Comp = 0.40 \text{f}'_{c} = 0.45 (3000 \text{psi}) = 2.250 \text{psi}$ $727200 \cdot 615c \cdot 615000 = 422 \text{psi}$ (AMPAD therage precompression limits P/A = 125 pair min cach 18.12.4) = 300 psi max Target lood balance 5 -60-70% of DL - will use and of 65%. 0.05(100p3f) = (5 p3f over requirements (2 hr. rating, assume corbonate aggregate) Ristrance) slow (int.) = 3/4" bottom Unstrained slow (ext) = 1/2" bottom = 3/4" top Tendon ordinate Tendon Ca Loci* Ext support -monor 4.0 " 7.0 " Int Support - top aend 1.0 " Int. Spon - bottom 1.75" End spon -bottom * measured from bottom of slab ant = 7-1= 600' (4+7) - 1.75: 3.75" gend = FRAME & OLCULATIONIS $A = bh = (20')(12'')(8'') = 1920 m^{2}$ $S = bh^{2} = (20)(12'')(8'')^{2} = 2560 m^{3}$ Bolomed lood who = (03p3f)(20') = 1300 pif = 1.3 K/ fr For ce needed to conferrent load in and bay - P=wat = (1,3)(25)2 325 K 8 (3.15 Baard

New York, NY

Cial and

	40 100010	OPTION # 3 - POST-TENSION	NED 312
	- # of tendons up	achieve = 325 = 12.2	-> 12 tondon S
		26.0 177 801	
	- Actual force for bo	orded yendon	
	Pactual = (1	2)(26.6K)= 319.2 = 320K	
	- Balaneod load for	end spen	
4D	Wn = (320	(1.3Kf+)= 1.28Kf+	
CAND CAND	325		
0	- Actual precompre	SEO antes	
	Parent /		
	A =	$(820^{4})(1000) = 100 psi >$	125 psi mun
		1120m	300 pei mex
	Geele limentor spon.	. 2	
	P= (1.3 Klft)(25') = 208 K < 32014	
~	8 (6/12	z")	
\bigcirc			
	$w_{b} = (320)($	8)(6/12") = 2.048 K/ft	
	we 2.0	48 = 109.82 = 1.0	okgy!
		/ 18-1269(20)	
•	Effective prestr	ess force, Peff = 320K	
	- Check Slab street	es (moments from DDM)	
	$M_{0} = \frac{1}{2} (20') (25)$	$5 - \frac{22}{12}^2$ (1)	State Street in
	Ma		
	DEDD		Boulend) Boulint
M.	125055 167.7 K	53.7 K	85.9 K 136 F
Don Min	(0.70) Mo= 117.412	37.6 14	60
M ⁺	(0.50)M0 = 83.9"	26.91	- 43 K
Ma	+ (0:30) Mo = 50:3"	16.1 14	23.8
Harri M.	(0.35) M = 109"	34.9	88
U 14	50.1		41.0
	x		

40 Bond Street

TECH 2	40 BOUTS	OPTION #3 - POST-TENDIONED 4. 1.
\sim	- Stress Immediately,	after locking (DL+ BN-)
	· Midegon · ftop	= (-MOL + Mide) / S - P/A
	f∞	st = (+ Moz + Misel)/3 - P/A
	-Interior .	frep= (-58.7+47.6) (12)(000) - 100psi = -218 psi comp
		2560 m3 20.65/c1 = 18000
D		paso 1
WPAL		footom = (53,7-416)(12)(1000) -166 = -114 (psi com) 2560 21800 psi OK!
Ś	-End . A	+ (-83.9 + 43) (12) (1000) - 160 = -358 psi comp.
		2000 - 1800psi okan
	7	hot = (88.9-43)(12)(1900) -144 = 26,001 tonsion
		2560 < 3 JE = 164ps1 0
	· Support · for	= (MDL + Mm)/S - P/A
	Jox	of = (-Mo_+ Mod)/S = P/A
0	Front	= [(117.4-60)(12)(1000)] - 166 = 103 poi tansion
\bigcirc		2540 2 164 psi 0Ksy1
	fro	+=[(-117.4+60)(12)(1000)]-166=-485 psi comp
		2500 1 <1800psi 0KAY!
	- Stress at Service	ce land (DL+LL+ BAL)
	• Midsper - fr	100 (-MOL-MLL+MON)/S-P/A
		toot = (MD_ + MU MDal)/S - P/A
	- Interior	· for = (-58,7-18.8+47.6)(12)(000) -166= - 306 per (
		2500 - 2250 031 04
e.		foor = (58.7+18.8-47.6)(2)(1000) -166 = -26 poi (C)
		2560 4 2250051 04
	- tra 3pe	1 top 1-83.7-20 + 19 (12)(100) -100 = + 183poi (0 2500 - 0250 - 0250 - 02
0		
\bigcirc		+ toor = (85.1.+ 201-13)(12)(000) - 1660= 152p31 (T)
		7427,051.07

Téch 2	40 BOND	OPTION # 3- POST-TENSIONED	5 12
	• Support streets	s. frop=(Mor + Mu- Meai)/S-P/A froot. (-Mor - Mu + Moo)/S-P/A	
	ftop =	(117.4 + 37.6 - 60)(12)(1000) - 160 = 2.2500	19 psi (r) 424 psi okay
đ٩	fice+ =	-100 00)(12)(1000) -100 - 011 2800 - 2	psi (c) 2250
CAMP.	* All Streese	s are within the permissible code win	15×
	ULTIMATE STRENC		
	- Determine factored	moments	-
	The primary post	tersioning moments, MI, vary along 4	he
	length of the	span.	
	$M_1 = P(e)$		•
\bigcirc	e=0" (e= 3,0	e exterior support (NA to center of tends	on)
	$M_{1} = (320k)($	<u>3.0")</u> <u>-</u> 80⊮ 12"	
	The secondary por	st tensioning moments, Marc, vary luncarl	y betuten suppo
	Marc = Minut - 1	Ma 20 " 20 "	
		D= -2011C	
	The typical load a MU=1.2 Ma	pimbo for ultimate strengten design + 116 MUL + 1.0 Macc	
	Qebim HA Dages TA	$m_{0} \cdot m_{0} = 1.2 (83.9) + 1.0 (20.9) + 1.0(-10) =$ $m_{1} = m_{0} = 1.2 (-117.4) + 1.0(-37.6) + (1.0)(-2)$	134 IK 10)= -221 IK
	-Determine min to strength design	orded reinf. to see if acceptatole for ul	thmate
\bigcirc	Positive moment Intenor spe	region $f_{f_{t}} = -26 < 2\sqrt{f_{c}} = 2\sqrt{5000} = 141pt$	b i
	End open =	$f_{c} = 152 > 2 f_{c} = 2 \sqrt{5000} = 141 \text{ psi}$	

TECH 2	40 BOND	OPTION#3- POST TEUSIONED	-112			
	foo= 174,000psi +	[0,000 + [(0000)(20)(12)d] + 00010]				
	- 184,000 + 2	179 d				
	a = Chofy + Apofp	s) (0.864'26)				
	At supports					
NINPAD	$d = 8'' - 3 4''_{CC} - \frac{1}{2}$ $f_{PS} = 184,000 +$	(1/2') = 7'' (2179)(7) = 199,253 pt;				
J.	$a = (2.0 \text{ in}^2)(60\text{ksi}) + 1.8866.07(199\text{ksi}) = 0.476$ $0.85(5)(20')(12'')$					
	\$Mn= 0.9 [2.0in	$\frac{1}{2}(00k3i) + (1.836)(199) (7 - 0.476){12''}$				
	= 252 11 >					
	uner turbant mot		. Suppor			
	the minimum langung of ACI 318-08	5 must also conform do une provision				
	At mideper (end) d = 8'' - 1'/2'' - ($\frac{1}{2}(1/2^{2}) = \frac{1}{4}$				
	$\frac{1}{900} = \frac{100}{100} \frac{1}{100} + \frac{100}{100} \frac{1}{100} + \frac{100}{100} \frac{100}{100} + \frac{100}{100} \frac{100}{100} - $					
	$\phi M_n = 0.9 3$	$\frac{12}{2} \left(\frac{12}{2} \right) + \frac{12}{2} \left(\frac{12}{2} \right) \left(\frac{12}{2} \right) = \frac{12}{2} \left(\frac{12}{2} \right) \left(\frac{12}{2} \right) = \frac{12}{2} \left(\frac{12}{2} \right) \left(\frac{12}{2} \right) \left(\frac{12}{2} \right) = \frac{12}{2} \left(\frac{12}{2} \right) \left(\frac{12}{2}$				
	~ 298"	> 134 " Minimum reing OKDY!				
		# 4 Ce 12" o.c. bottom at end epons.				
	* D1					
\odot						
2						

ich2	40 BON	Þ	OPTION*	3 - POST-TENSIONED	8/1
	FRAME :				
	A= K) = (25')(12")(8") = 2400 m	2	
	S= br	2 (25)(12	$(A'')^2 = 3200$	nn ²	
	4	> (0		
	Balar	25) = 1625 plf = 1.6	3 K ft		
-	Force	needed to co	unteract load in	n end bay P=W12 =	(1.63×14)(20')2 201
DM				89 md	8 (3:12)
W					12 /
A.	•# 05	tendons =	26,6400005°	81 → 10 tendens	
	· Act	val force P	bos = (10)(26.6)) = 200 ¹⁴	
	· Bo	once lood R	remiarro		
		$\omega_n = (2$	······································	1.000 KIPT	~
			2001		
	• Act	val precomp	reasion stress	5	
		Pour	= (21064)(1	000) = 111 poi x 125	psi mun
		· · ·	2400		
\frown				00 Paor A =	120 pBi
		126-010	200 2 2 2 0 5		
		1200310	2400 11) 30	10,000 = 800r 11/2	-1 -+12 tendono
		(12 tendons)	(20.0K) = 320K		
	· One	ok interior s	per,		
		P= (1.60	= (B+) (20') =	1664 4 3204	
			(6/12)		
		- 100	1 lance 1 concer		
		WP - 1.3.	10,00,0112)	= 3.2 * fft	
			(20-		
	-	$w_{1} = 3.2$	1 2	21 10201 (10 501
		0	(0.126)(25)	3.125	HI S /O OKAY
	F	ffcetive pres	tress force, 1	200 = 320 K	
				3	
	- Check of	ab stases	(momentsfrom	DDM)	
	M0 - 8	(28)(20.	-112)-W		
		DEAD	LINE	BOL (END)	BAL (Int)
M		12914	40 055	253 660005	25 = 128
Mex	+ 07/2	90.3	4	4710	1027
W+	0.5(M)	(4.5	20.5	.24	
Min	+ 0,8(Ma)	38,1	12.3	20.4	
M	0.05(My)	9.80	26.7		88,8
M	0.35(Mo)	10.0	10 A		A: 7

Samantha D'Agostino

40 Bond Street

FEON 2	40 BOND	OPTION # 3- POST-TENSIONED	9/12
	Stress immediately	apper yocking (DL+Bb()	
		3	
	· Midspor		
	-Int = fto	0 = (-45.2+ 46.2)(12)(1000) - 125031 = -	121.25 psi (d)
		3200	2 1800 psi okay
		11000 - 126	129, 2001 (1)
	a p	3200	< 1800051 OKAY
P			
IPAI	- End=to	100 = (-64.5+34)(12)(000) - 125 = -	239 pei (C)
(A)		3180	
ತ್ರ	8	Poot = (64.5-34 X12)(1000) -125 = -1	por (c)
		3200	~ 1800 per outy!
	· Support - S	Frop = (90,3-47.6)(12)(1000) -125=	35 poi (T)
		3200 41	64pbi OKAY!
		- (-90.3+47.6)(2)(m2) -135-	285
	7	bottom - 3200	(1800 05) OKAY
\sim	Malson : Inter	Ded (DLFU , BBC)	25 =-175 (C)
		3200	- 2250 001 OKAY
	6		
	Jeo	$\frac{1}{3200} = \frac{1}{125} \frac{1}{2} \frac{1}{125} 1$	- 15 por (c) 4 22 50 50 0441
	·Ext ·	frup - (-64.5-70.5+34)12)100) -125=	- 816 ps) (C)
			E ZZ SO OLSY.
		foot = (64.5+20.5-34)(12)(000) -125=	66 poi (J)
		3200	2424 psi okdy
	· Support · frop	= (90.3+28.7-47.6)(12/1000)-125=	143031 (J)
		3200	2 424 psi ok!
	fat	= (-90.3+287+47.6) (2/00) - 129 = -	393 mi (c)
	,	3200	4 2230051
	* All Briceses	or whin the permission code units -	
	ULTIMATE STEENOT	H	
\bigcirc	- Determine foctored	Chroments .	
\bigcirc	the primary f	sout sendioring moments, M, vor along	z-le
Sh.			
	3		
		4	

Samantha D'Agostino

40 Bond St	reet
------------	------

TECH 2	40 BOND OPTION + 3- PORTINGIALED	10/12
	$M_{1} = P(e)$ $e = 0^{\circ} @ ext. = upport$ $e = 30^{\circ} @ unt. = upport (NA up conter of under)$ $M_{1} = (320)(3.0) = 80^{1/2}$	
9	$M_{sec} = M_{bol} - M_{5}$ = $47.6 - 80 = -82.4$ ^{KC}	
CAMP	The typical load ambo for ultimate strength dosign MU = 1.2 Mpc + 1.00 + 1.0 Mosc At mideon = 1.2 (64.5) + 1.6 (20.3) + 1.0 (-32.1/2) = 9414	
	At support = $1 \ge (-90.3) + 1.6 (-237) + 1.0 (-324/2) = -171$ - Determine min bonded reinf 40 see if acceptable for otherate strongy design	
	Positive moment region $-1nt \cdot Spen = f_t = -75 < 2\sqrt{5005} = 141,05;$ $-End Spen = f_t = 143 > 141,05;$	
	- Minimum positive moment reinf. req. d (ACI 18.9.3.2) y = ft / (ft + fc)b	
	$N_{c} = \left(\frac{(4.5+20.5)}{3200} \right) (0.5) (2.49) (25) (12) (12) = 119K$	
	$\frac{43.1112}{=3.97.112} / 0.5(60)^{2} 3.97.112}{=3.97.112}$	
	H 4 @ 12 -> 0.20 12/F+ Mun known shall be 13 akor spen 4 anterod In positive moment region (ACI 18-9.4.1)	
0	- Neg moment region Asmun = 0.00075 Age (Ac118.9.3.3) -11m. Supports Ext supports Acg = mox (8")(25)(12") = 2400 Momin = 0.00075 (2400) = 1.8	
	(0 # 4 TPP) (24) +	

Page 47 of 49

Samantha D'Agostino

40 Bond Street

Samantha D'Agostino

cri2	40 BOND 0	PTION # 3 - POST-TENERONE)	[2]
	SHEAR . Column 20 4 2	34	
	ACI 318-08 \$ 11.11.2.2		
	At columns of two way	prestressed slabs + footing 5 unat rect	
	NC - (Pp) Nfc	0,27 Pc / D. C. (P	
	w) Bp = gmall	$(\alpha_{5}\alpha_{+1,5}) = (40(7)) + 1.5) = 5$	3.85
IPAD		00 119.4	
AN AN	= 3	5	
	$\frac{1}{bo} = 110$		
	d = 8 $y_p = v_{er}$	Tical amponent of all efforce strest	
	= 0	to be conservative as per RIVIV.2.2	
	Nc= (3.5(1.0) Je	5000 + 0.3 (140 pei)) (119.5) (7.0)	
	= 244 K		
\bigcirc	\$Vc= 0.75(2	44K) - 188K	
\bigcirc	NU = (0.214 Kef)($494 - \left(\frac{22}{12}\right)^2 = 105^{k}$	
	OVc = 183	K > 105K = Nu GOOD!	
	* No oddition	al shed rung. needed *	
	DEPLECTION		
	Due to the complete not	re of unis calculation, normally done	
	w apporter malysis,	a value for deflection for une positions	sioned
	Breed on shund with		10 15
	deflection should not to	se of save , especially with the	40-43
	help of the balanced	locial from the post tension tendens.	
	605		
0			
\bigcirc			

References

American Concrete Institute (2008) "Building Code Requirements for Structural Concrete and Commentary," *ACI 318-08*, Farmington Hills, MI

American Institute of Steel Construction, Inc. (2005) Steel Construction Manual, 13th Edition, Chicago, IL

American Society of Civil Engineers (2005) "Minimum Design Loads for Buildings and Other Structures," *ASCE 7-05*, Reston, VA

New York City Department of Buildings (2003) *Building Code of New York City*, Volume 1, New York, NY

Nilson, A.; Darwin, D; and Dolan, C. (2004) *Design of Concrete Structures*, 13th Edition, McGraw Hill, New York, NY

Precast/Prestressed Concrete Institute (1999) PCI Design Handbook, 5th Edition, Chicago, IL

RSMeans (2008) Assemblies Cost Data, 34th Edition, Reed Construction Data, Kinston, MA

RSMeans (2007) Facilities Construction Data, 23rd Edition, Reed Construction Data, Kingston, MA

Trygestad, A. (2005) "Post-Tensioning for Two-Way Flat Plate Construction," *Portland Cement Association Professional Development Series*, Skokie, IL

Vulcraft (2008) Vulcraft Steel Roof and Floor Deck Guide, Nucor Corporation